Skip to main content
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Research and News from ASM Journals
    • mSphere of Influence: Commentaries from Early Career Microbiologists
    • Archive
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mSphere
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mSphere
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Research and News from ASM Journals
    • mSphere of Influence: Commentaries from Early Career Microbiologists
    • Archive
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mSphere
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ

intestinal colonization

  • Open Access
    <span class="named-content genus-species" id="named-content-1">Enterococcus faecalis</span> CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine
    Research Article | Ecological and Evolutionary Science
    Enterococcus faecalis CRISPR-Cas Is a Robust Barrier to Conjugative Antibiotic Resistance Dissemination in the Murine Intestine

    CRISPR-Cas is a type of immune system in bacteria that is hypothesized to be a natural impediment to the spread of antibiotic resistance genes. In this study, we directly assessed the impact of CRISPR-Cas on antibiotic resistance dissemination in the mammalian intestine and under different in vitro conditions. We observed a robust effect of CRISPR-Cas on in vivo but not in vitro dissemination of antibiotic...

    Valerie J. Price, Sara W. McBride, Karthik Hullahalli, Anushila Chatterjee, Breck A. Duerkop, Kelli L. Palmer
  • Open Access
    The Gut Microbiota Is Associated with Clearance of <span class="named-content genus-species" id="named-content-1">Clostridium difficile</span> Infection Independent of Adaptive Immunity
    Research Article | Host-Microbe Biology
    The Gut Microbiota Is Associated with Clearance of Clostridium difficile Infection Independent of Adaptive Immunity

    Clostridium difficile infection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently, the role of the adaptive immune response in modulating levels of C. difficile colonization is unresolved. This work suggests that the indigenous gut microbiota is a...

    Jhansi L. Leslie, Kimberly C. Vendrov, Matthew L. Jenior, Vincent B. Young
  • Open Access
    Shifts in the Gut Metabolome and <span class="named-content genus-species" id="named-content-1">Clostridium difficile</span> Transcriptome throughout Colonization and Infection in a Mouse Model
    Research Article | Host-Microbe Biology
    Shifts in the Gut Metabolome and Clostridium difficile Transcriptome throughout Colonization and Infection in a Mouse Model

    Clostridium difficile is a bacterial pathogen of global significance that is a major cause of antibiotic-associated diarrhea. Antibiotics deplete the indigenous gut microbiota and change the metabolic environment in the gut to one favoring C. difficile growth. Here we used metabolomics and...

    Joshua R. Fletcher, Samantha Erwin, Cristina Lanzas, Casey M. Theriot
  • Open Access
    Aggregative Adherence and Intestinal Colonization by Enteroaggregative <span class="named-content genus-species" id="named-content-1">Escherichia coli</span> Are Produced by Interactions among Multiple Surface Factors
    Research Article | Host-Microbe Biology
    Aggregative Adherence and Intestinal Colonization by Enteroaggregative Escherichia coli Are Produced by Interactions among Multiple Surface Factors

    Enteroaggregative Escherichia coli (EAEC) bacteria are exceptional colonizers of the human intestine and can cause diarrhea. Compared to other E. coli pathogens, little is known about the genes and pathogenic mechanisms that differentiate EAEC from harmless commensal...

    Laura V. Blanton, Lawrence T. Wang, Jennifer Hofmann, Joshua DuBow, Alexander Lafrance, Stephen Kwak, Levi Bowers, Mandara A. Levine, Charles O. Hale, Philip M. Meneely, Iruka N. Okeke
Back to top

About

  • About mSphere
  • Board of Editors
  • Policies
  • For Reviewers
  • For the Media
  • Embargo Policy
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Types of Articles
  • Getting Started
  • Ethics
  • Contact Us

Follow #mSphereJ

@ASMicrobiology

       

 

Website feedback

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2379-5042