Hsp90
- Editor's Pick Research Article | Therapeutics and PreventionPuupehenone, a Marine-Sponge-Derived Sesquiterpene Quinone, Potentiates the Antifungal Drug Caspofungin by Disrupting Hsp90 Activity and the Cell Wall Integrity Pathway
Fungal infections cause more fatalities worldwide each year than malaria or tuberculosis. Currently available antifungal drugs have various limitations, including host toxicity, narrow spectrum of activity, and pathogen resistance. Combining these drugs with small molecules that can overcome these limitations is a useful strategy for extending their clinical use. We have investigated the molecular mechanism by which a marine-derived...
- Research Article | Molecular Biology and PhysiologyGlu-108 in Saccharomyces cerevisiae Rad51 Is Critical for DNA Damage-Induced Nuclear Function
Rad51-mediated homologous recombination is the major mechanism for repairing DNA double-strand break (DSB) repair in cancer cells. Thus, regulating Rad51 activity could be an attractive target. The sequential assembly and disassembly of Rad51 to the broken DNA ends depend on reversible protein-protein interactions. Here, we discovered that a dynamic interaction with molecular chaperone Hsp90 is one such regulatory event that governs the...
- Research Article | Molecular Biology and PhysiologyHsp90 Is Essential for Chl1-Mediated Chromosome Segregation and Sister Chromatid Cohesion
Recently, Hsp90 functional loss has been linked to aneuploidy; however, until now none of the components of sister chromatid cohesion (SCC) have been demonstrated as the putative clients of Hsp90. In this study, we have established that Chl1, the protein which is involved in maintaining sister chromatid cohesion as well as in preventing chromosome loss, is a direct client of Hsp90. Thus, with understanding of the molecular mechanism,...