apoptosis
- Research Article | Host-Microbe BiologyHuman Cytomegalovirus UL7, miR-US5-1, and miR-UL112-3p Inactivation of FOXO3a Protects CD34+ Hematopoietic Progenitor Cells from Apoptosis
Human cytomegalovirus (HCMV) causes serious disease in immunocompromised individuals and is a significant problem during transplantation. The virus can establish a latent infection in CD34+ hematopoietic progenitor cells (HPCs) and periodically reactivate to cause disease in the absence of an intact immune system.
- Research Article | Host-Microbe BiologyAnalysis of Apoptosis-Related Genes Reveals that Apoptosis Functions in Conidiation and Pathogenesis of Fusarium pseudograminearum
The plant-pathogenic fungus F. pseudograminearum is the causal agent of Fusarium crown rot (FCR) in wheat and barley, resulting in substantial yield losses worldwide. Particularly, in the Huanghuai wheat-growing region of China, F. pseudograminearum was reported as the dominant Fusarium species in FCR infections.
- Research Article | Host-Microbe BiologyLive In Vivo Imaging of Plasmodium Invasion of the Mosquito Midgut
Malaria is one of the most devastating parasitic diseases in humans and is transmitted by anopheline mosquitoes. The mosquito midgut is a critical barrier that Plasmodium parasites must overcome to complete their developmental cycle and be transmitted to a new host. Here, we developed a new strategy to visualize Plasmodium ookinetes as they traverse the mosquito midgut and to follow the response of damaged epithelial...
- Editor's Pick Research Article | Host-Microbe BiologyLabel-Free Digital Holo-tomographic Microscopy Reveals Virus-Induced Cytopathic Effects in Live Cells
This study introduces label-free digital holo-tomographic microscopy (DHTM) and refractive index gradient (RIG) measurements of live, virus-infected cells. We use DHTM to describe virus type-specific cytopathic effects, including cyclic volume changes of vaccinia virus infections, and cytoplasmic condensations in herpesvirus and rhinovirus infections, distinct from apoptotic cells. This work shows for the first time that DHTM is...
- Research Article | Host-Microbe BiologyEhrlichia chaffeensis TRP75 Interacts with Host Cell Targets Involved in Homeostasis, Cytoskeleton Organization, and Apoptosis Regulation To Promote Infection
Human monocytic ehrlichiosis (HME) is caused by an obligatory intracellular bacterium, E. chaffeensis, and is one of the most prevalent, life-threatening emerging infectious zoonoses in the United States. The mechanisms through which E. chaffeensis invades and establishes an intracellular niche are not well understood but are dependent on secreted ehrlichial effector proteins. The significance of this study is in addressing how...