























Alterations in Metabolome and Transcriptome during CDI

FIG 4 Multivariate-based analysis of the gut metabolome and C. difficile transcriptome during colonization and infection. A
loading plot of the features selected in each component is provided. The top row indicates the features in the first component
for the metabolites (left) and transcripts (right). The bottom row indicates the features in the second component for the
metabolites (left) and transcripts (right). The values corresponding to the specific bar magnitudes are indicated in Table S5. The
color indicates the expression levels of each variable according to each class where blue represents 12 h, orange represents 24 h,
and gray represents 30 h.

gut metabolome and C. difficile transcriptome, we performed a sparse partial least-
squares-discriminant analysis (sPLS-DA) utilizing the mixOmics package. The aim of the
analysis was to identify a highly correlated multiomics signature discriminating the 12,
24, and 30 h time points throughout colonization and infection. Our final sPLS-DA
model contained two components. The loading plots for the first component and
second component are shown in Fig. 4 at the top and bottom, respectively (Table S5).
Transcriptomic features dominated the first component. We found only two metabo-
lites and 34 transcripts in the first component, all representing the 30 h time point
(Fig. 4, top). This suggests that there were significant changes in the C difficile
transcriptome at the 30 h time point compared to the 12 h and 24 h time points. The
second component was made up of 12 metabolites and six transcripts (Fig. 4, bottom).
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FIG 5 Plot of the correlations between the metabolome and C. difficile transcriptome. A Circos plot displays the positive and
negative correlations (r = >0.7) between the selected features with blue and red lines, respectively. The values corresponding
to the exact weight for each line are indicated in Table S5. The metabolites are indicated in purple (top right quadrant), and the
transcripts are indicated in green. Each individual feature name is labeled in the block. The outer lines indicate the expression

levels of each variable according to each class where blue represents 12 h, orange represents 24 h, and gray represents 30 h.
CDS, coding sequence; PLP, proteolipid protein.

The metabolites in the second component, which were primarily amino acids, differed
across all time points but predominantly represented changes in the early stages of
colonization at the 12 h and 24 h time points as indicated by the color of each of the
bars in Fig. 4.

Furthermore, we plotted the correlation between the selected metabolites and
transcripts (r = >0.7). We observed strong correlations between each transcript and at
least two metabolites, which further highlights the association of each feature with
specific metabolites. Transcripts encoding 5-aminoimidazole-4-carboxamide ribonucle-
otide transformylase, acyl-CoA dehydrogenase, phosphotransferase system (PTS)-
mannose transporter sub-IID, phosphate butyryltransferase, a hypothetical protein, and
a cytosine permease had the most connections to metabolites. As shown in Fig. 5, all
the aforementioned transcripts had positive correlations with 2-methylcitrate/homoci-
trate, 3-(4-hydroxyphenyl) lactate, 5-aminovalerate, 5-oxoproline, beta-muricholate,
and galactitol (dulcitol). Likewise, these same transcripts all had negative correlations
with leucylalanine, N-acetylneuraminate, palmitoleoylcarnitine, proline, prolylglycine,
taurine, and thioproline. Additionally, urate was negatively correlated with a hypothet-
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ical protein, PTS-mannose transporter sub-IID, and cytosine permease. The data corre-
sponding to the exact weight determined for each line are listed in Table S5.

DISCUSSION

The rapid kinetics of the C. difficile VPI 10463 life cycle during colonization of a
susceptible host have been well described; however, global temporal changes to the
metabolome and C. difficile transcriptome during the early stages of colonization by this
strain have not been examined (13). Although there are differences among the C. dif-
ficile strains used in various mouse models, as well as differences in the models, our
metabolomic and transcriptomic results are in accordance with those of other in vivo
studies that identified amino acid and carbohydrate metabolism as being important
during C. difficile colonization and infection (20-22). Our results also further highlight
the importance of the inverse relationship between the indigenous gut microbiota and
nutrient levels, including many nutrients that are essential for C. difficile colonization.
For example, due to auxotrophy and nutritional preference in complex media, proline
has been identified as a nutrient of significance for C. difficile (9, 20, 55-57). Germfree
mice have significantly higher levels of proline in their ceca, consistent with the
increase observed in antibiotic-treated mice, suggesting that an intact microbiota is
responsible for the low relative abundance of proline in mice that show resistance to
colonization by C. difficile (58). In support of this, the top two metabolites identified by
Random Forest analysis were 5-aminovalerate and trans-4-hydroxyproline. trans-4-
Hydroxyproline decreased in relative abundance, while 5-aminovalerate increased,
consistent with the utilization of the former. Indeed, hydroxyproline can substitute for
proline in vitro and is a major constituent of collagen, one of the most abundant
proteins in the body (55, 59). Recently, a glycyl radical enzyme from C. difficile has been
shown to mediate dehydration of hydroxyproline, likely supplying the bacteria with a
further source of proline (60, 61). In our study, the expression of hypD, the gene
encoding the glycyl radical enzyme, was increased at 24 h but had decreased signifi-
cantly by 30 h, suggesting that it may be responsive to hydroxyproline levels (see
Fig. S3 in the supplemental material).

Random Forest analysis also identified several N-acetylated amino acids with high
MDA scores. These were abundant early but had decreased in abundance by 24 h.
N-acetylation is a common posttranslational modification in eukaryotes; therefore,
some of the N-acetylated amino acids may have been derived from degradation of
mouse proteins present in the gut (62). Many of these N-acetylated amino acids, as well
as non-N-acetylated amino acids, including many which C. difficile has been demon-
strated to use preferentially in vitro, were found to be relatively abundant early (57).
Notably, valine and proline are essential amino acids for C. difficile, while the absence
of methionine leads to extremely poor growth in vitro, suggesting that C. difficile may
prioritize the acquisition and consumption of amino acids in vivo during colonization
(26). Indeed, the non-N-acetylated forms of five of these amino acids make up over half
of those required by C. difficile in minimal defined media (24), highlighting their
importance.

Many of these amino acids are known to affect the life cycle of C. difficile. Threonine,
when included in a cocktail of eight other amino acids, contributes to suppression of
toxin synthesis (24). Isoleucine and valine are branched-chain amino acids that are
known Stickland reaction donors, supplying reducing power to proline reductase
through NADH and resulting in NAD+ and 5-aminovalerate (55, 56). The abundance of
their N-acetylated forms had decreased by 24 h and remained low at 30 h. Given the
increased expression of the brnQ genes encoding the branched-chain amino acid
importer, it is likely that C. difficile imports significant amounts of these amino acids to
supply Stickland donors for proline fermentation. The codY global transcriptional
regulator gene in both C. difficile and Staphylococcus aureus regulates the brnQ genes,
and brnQ has a demonstrated role in pathogenesis in the latter organism (63, 64). CodY
is an allosteric regulator that mediates repression of most of its regulon when bound
by branched-chain amino acids or GTP, including the toxin genes tcdA and tcdB (65). In
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TABLE 1 Proteases and peptidases that were differentially expressed throughout
C. difficile colonization and infection?

Log, fold change

Protease Protein ID 24 h 30 h
Clp protease WP_003428224.1 5.71** 5.17**
Aminopeptidase WP_009902261.1 5.92** 5.50%**
Peptidase S41 WP_003437815.1 5.05** 4.87**
Beta-aspartyl-peptidase WP_003416871.1 4.59**** 4.33%***
Beta-aspartyl-peptidase WP_004454406.1 4.96**
Serine protease WP_011861421.1 4.40*
p-Alanyl-p-alanine-carboxypeptidase WP_003428267.1 4.33*
Peptidase WP_011862025.1 4.21*
Zinc metallopeptidase WP_003416253.1 —3.48**

alD, identifier. *, P adj. of <0.05; **, P adj. of <0.01; ***, P adj. of <0.001; ****, P adj. of <0.0001.

addition to the amino acids identified via Random Forest analysis, the abundance of the
carbohydrates N-acetylneuraminate and mannitol/sorbitol was observed to be high
early but decreased by 24 h. They have been linked to C. difficile colonization of
susceptible hosts, and C. difficile can utilize them for growth in vitro (9, 20) Consistent
with this is the observation that several of the C. difficile genes encoding carbohydrate
uptake systems, for example, those encoding PTS transporters, are increased in
expression by 24 h. Also increased in expression were the genes of the had operon,
responsible for leucine fermentation. The had genes were previously reported to be
negatively regulated by the global carbon catabolite repressor CcpA in C. difficile strain
JIR8094 (66). Similarly to CodY, CcpA is a negative repressor of toxin gene expression,
though its activity is responsive to carbohydrates rather than to branched-chain amino
acids/GTP. Therefore, the derepression by 24 h of the known CodY and CcpA targets
brnQ, the had operon, tcdA, and tcdB, as well as many others, is strong evidence that
C. difficile had depleted the local pools of these key nutrients and was experiencing
nutrient starvation.

C. difficile is proteolytic, with several proteases and peptidases known to be involved
in various processes, including cell adhesion, motility, biofilm, and germination (67-74).
The expression of several proteases and peptidases was increased at 24 h in the
C. difficile transcriptome and even more at 30 h (Table 1). Some of these were likely
housekeeping proteases, such as Clp, which would be predicted to increase in expres-
sion, as the rapidly growing population of C. difficile cells would encounter cellular
stressors in the form of antimicrobial peptides or other host defense mechanisms,
especially after toxin-induced inflammation. Others may play a role in nutrient acqui-
sition in the host, as evidenced by the increase in expression of numerous free amino
acids and dipeptides at 30 h. Two such genes are predicted to encode B-aspartyl-
peptidases that are components of the glycine reductase complex. Glycine is another
amino acid that is fermented via the Stickland reaction, and nine of the peptides found
to be increased in most mice at 30 h contained glycine. The remaining genes encoding
the glycine reductase were significantly increased in expression at 24 and 30 h. Another
gene encodes a product that is predicted to be a member of the S41 family peptidase.
Its predicted protein is homologous to CtpA, a protease linked to pathogenesis in
multiple Gram-negative pathogens and S. aureus, though it is unclear if those homologs
are active on host proteins (75-78). Regardless, these proteases and peptidases remain
targets for future investigation into the molecular pathogenesis of C. difficile in vivo.

The largest class of metabolites for which we detected changes throughout infec-
tion was that of the lipids, where expression of a majority was significantly increased by
30 h postchallenge. As the activity of the C. difficile toxins TcdA and TcdB was evident
by 30 h and as several of these lipid species are derived from the host, we interpret this
to mean that the extensive cellular and tissue damage present at that time point had
led to an influx of cellular debris and lipid signaling species into the lumen of the
cecum. Indeed, numerous endocannabinoid species were detected, as was the inflam-
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matory mediator 12-HETE, consistent with the highly inflammatory nature of the host
cell response to intoxication by TcdA and TcdB activity (79).

Finally, our study had several limitations, the most important of which was the
inability to confirm that the detected changes in the cecal metabolome were due
specifically to the metabolism of C. difficile. Previous work by our group showed that
members of the Lactobacillus genus remain in the cecum after antibiotic treatment (9,
13, 80). Therefore, while most of the changes in the cecal metabolome are likely due to
the presence of C. difficile, given the limited taxonomical distribution of certain meta-
bolic pathways, e.g., Stickland metabolism, it can be assumed that the host and the
remaining microbiota could contribute to changes in the metabolome that occur either
directly or indirectly in response to the presence of C. difficile or independently of it.
While steps were taken to increase specificity in the RNA Seq analysis, we cannot rule
out the possibility that some of the reads that mapped to the C. difficile genome were
derived from the transcripts of highly conserved genes present and expressed in other
species in the murine ceca from which the RNA was isolated. Additionally, our study
examined the metabolome and C. difficile transcriptome only in mice treated with
cefoperazone. Antibiotics with different mechanisms of action would target different
classes of bacteria, leading to dissimilar community structures and thus to dissimilar
metabolic environments. Jenior et al. found that to be the case in mice pretreated with
different antibiotics; they observed that C. difficile adapted its gene expression to each
environment at 18 h postchallenge with C. difficile (20).

The two-tiered approach of combining metabolomics with transcriptomics in vivo
reinforced the idea that C. difficile uses certain amino acids and carbohydrates early
in the process of colonization of a susceptible host. This was supported by the
multivariate-based integration of the omics data. We could discriminate the metabo-
lites and transcripts required for C. difficile physiology by different time points through-
out infection. In particular, the abundance of proline-containing peptides and the
N-acetylated forms of methionine, threonine, and branched-chain amino acids de-
creased early, i.e., by 24 h postchallenge. Likewise, a number of carbohydrate and
amino acid fermentation products began to increase in abundance by 24 and 30 h, at
which point we detected an increase in the abundances of free amino acids and
dipeptides with concomitant increases in protease and peptidase gene expression.
Future studies of the activity of C. difficile proteases and peptidases in vivo are needed
to determine what role, if any, they play in nutrient acquisition and whether the tissue
damage induced by the toxins is required to liberate potential energy sources. Addi-
tionally, by defining what is required for C. difficile physiology and pathogenesis in vivo,
it will allow us to rationally design more highly targeted bacterial therapeutics to
outcompete and prevent this infection in the future.

MATERIALS AND METHODS

Ethics statement. Ethics and animal housing conditions were identical to those previously described
by Theriot et al. (9, 12). Briefly, the University Committee on the Care and Use of Animals at the University
of Michigan approved this study. The University of Michigan laboratory animal care policies follow the
Public Health Service policy on Humane Care and Use of Laboratory Animals. Animals were assessed
twice daily for physical condition and behavior, and those assessed as moribund were humanely
euthanized by CO, asphyxiation. Trained animal technicians performed animal husbandry in an AAALAC-
accredited facility.

Animals and housing. C57BL/6 wild-type (WT) mice (5 to 8 weeks old; male and female) from a
breeding colony that was established using animals purchased from Jackson Laboratories (Bar Harbor,
ME) were used for the experimental infections. Mice were housed with autoclaved food, bedding, and
water. Cage changes were performed in a laminar flow hood. Mice were subjected to a 12 h cycle of light
and darkness.

Mouse model of C. difficile infection. C. difficile VPI 10463 (ATCC 43255) spores were prepared as
described in previous studies (9, 12). Briefly, C. difficile spores were heat treated for 20 min at 65°C to
ensure that any remaining vegetative bacilli were killed before animal gavage was performed. Viable
spores were enumerated by plating for CFU per milliliter on taurocholate, cefoxitin, cycloserine, and
fructose agar (TCCFA) to determine the challenge dose (81). Mice (n = 32; male and female) were given
cefoperazone (0.5 mg/ml) in sterile drinking water for 5 days and were allowed 2 days on regular drinking
water before challenge with 820 C. difficile spores was performed by oral gavage. Mice (n = 8; male and
female) from different cages were euthanized by CO, asphyxiation and subjected to necropsy prior to
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C. difficile challenge at time point 0 h and throughout the infection period at 12 h, 24 h, and 30 h. Cecal
content was collected at the time of necropsy and stored in RNAlater for transcriptomic analysis and/or
flash frozen in liquid nitrogen for metabolomic analysis. Samples were kept at —80°C until processing.
Animals challenged with C. difficile were monitored for signs of clinically severe CDI, including inappe-
tence, diarrhea, and hunching. At the time of necropsy, cecal content of animals challenged with
C. difficile (n = 4) was plated on selective TCCFA to confirm colonization and enumerate bacterial load.
All samples stored at —80°C in this study were later shipped on dry ice and stored at —80°C at C. M.
Theriot’s new institution, North Carolina State University, until further processing.

Global metabolomic analysis. Cecal content was harvested from mice at 0 h (before C. difficile
challenge) and at 12 h, 24 h, and 30 h postchallenge with C. difficile VPI 10463 spores (n = 8 per time
point; 4 male and 4 female from different cages). Cecal content samples were submitted in 1.5-ml
Eppendorf tubes to Metabolon, Inc. (Durham, NC), for untargeted metabolomics analysis. Sample
preparation for metabolomics analysis was performed by Metabolon, Inc., in the same manner as was
described in our previous study (9) and in the extended Methods section in Text S1 in the supplemental
material. Briefly, individual samples were subjected to methanol extraction and then split into aliquots
for analysis by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC/MS). The
global biochemical profiling analysis comprised four unique arms consisting of reverse-phase chroma-
tography positive-ionization methods optimized for hydrophilic compounds (LC/MS Pos Polar) and
hydrophobic compounds (LC/MS Pos Lipid) and reverse-phase chromatography performed under
negative-ionization conditions (LC/MS Neg) as well as a hydrophilic interaction liquid chromatography
(HILIC) method coupled to negative ionization (LC/MS Polar) (82). All the methods alternated between
full-scan MS and data-dependent MS” scans. The scan ranges differed slightly between methods but
generally covered 70 to 1,000 m/z.

Metabolites were identified by automated comparison of the ion features in the experimental
samples to a reference library of chemical standard entries that included retention time, molecular
weight (m/z), preferred adducts, and in-source fragments as well as associated MS spectra and were
curated by visual inspection for quality control using software developed at Metabolon. Identification of
known chemical entities was based on comparisons to metabolomic library entries of purified standards
(83).

Two types of statistical analyses were performed: (i) significance tests and (ii) classification analyses.
Standard statistical analyses were performed in ArrayStudio on log-transformed data. For those analyses
that are not standard analyses available in ArrayStudio, R software (https://cran.r-project.org/) was used.
Following log transformation and imputation of missing values, if any, with the minimum observed value
for each compound, contrast ANOVA was used as a significance test to identify biochemicals that differed
significantly (P < 0.05) among all time points. An estimate of the false-discovery-rate (q) value was
calculated to take into account the multiple comparisons that normally occur in metabolomic-based
studies. For the scaled-intensity graphics, each biochemical in the original scale (raw area count) was
rescaled to set the median across all animals and time points to a value of 1.

Additional statistical analyses and data visualization was performed in MetaboAnalyst 3.0 (http://
www.metaboanalyst.ca/faces/ModuleView.xhtml) (31). Briefly, the data were uploaded in the Statistical
Analysis module with default settings and no further data filtering. The data were log transformed using
the glog option, and the Kruskal-Wallis one-way ANOVA option was used to determine statistical
significance. The heat map was built using the top 50 metabolites identified by Random Forest analysis
with the Ward clustering algorithm and Euclidean distance.

Extraction of C. difficile RNA from cecal content. Paired samples of cecal content (n = 4 per time
point; 2 males and 2 females at 12 h, 24 h, and 30 h) harvested for the untargeted metabolomics analyses
were suspended in RNAlater (Thermo Fisher Scientific) and stored at —80°C until RNA extraction, at which
point the samples were centrifuged and the RNAlater supernatant was removed. Pelleted cecal content
was resuspended in 10 ml TRIzol reagent (Thermo Fisher Scientific) and distributed to 1.5-ml centrifuge
tubes in 1-ml aliquots. Due to the volume of the tubes, the RNA extraction was performed with two
samples at a time. Phase separation was performed using 200 ul chloroform per 1 ml cecal content/
TRIzol. The aqueous phase (~500 ul) was added to ice-cold isopropanol with 5 ug/ml glycogen at 1:1.
Samples were centrifuged at 4°C for 20 min, after which pellets were washed three times with 70%
ethanol. Pellets were resuspended in water and stored at —80°C until further processing. RNA quality was
assessed via the use of an Agilent 2100 Bioanalyzer. All subsequent manipulations were performed on
all samples simultaneously. RNA samples were depleted of DNA by two rounds of treatment with Turbo
DNase (Thermo Fisher) per the manufacturer’s protocol; all samples were column purified with a Zymo
Clean and Concentrator kit (R1015). Depletion of contaminating genomic DNA was confirmed via PCR
performed with rpoC primers (see Table S1 in the supplemental material).

RNA Seq library preparation and analysis. RNA was assessed for quality using a BioAnalyzer
(Agilent Technologies, Santa Clara, CA). Samples with RNA integrity numbers (RINs) of 8 or greater were
depleted of rRNA using RiboZero (lllumina catalog no. MRZH116). One of 12 samples was not used due
to a poor RIN score (less than 8). The rRNA-depleted RNA was sent to the University of Michigan DNA
Sequencing Core, Ann Arbor, MI, where samples were processed in a blind manner and converted to a
library capable of cluster generation and sequencing using a TruSeq Stranded mRNA Library Prep kit
(Illumina catalog no. RS-122-2001 and RS-122-2001) per the supplier’s protocol. Libraries were checked
for size on a TapeStation and quantified using a Kapa Biosystems library quantification kit (catalog no.
KK4835) for lllumina adapters. The libraries were pooled and sequenced on a HiSeq 4000 system as a
paired-end 50-nucleotide run following the lllumina protocol. The input RNA (100 ng) underwent 12
cycles of PCR, and 11 libraries were multiplexed and run across 5 lanes to reduce lane-to-lane or
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run-to-run variation. Raw fastq.gz files were imported into Geneious 10.2 (Biomatters) (51). BBDuk was
used in Geneious to trim adapters, low-quality bases (Phred score of less than 30), and short reads (less
than 30 nucleotides), as well as reads with an average Phred score of less than 30. Trimmed paired-end
reads were then mapped to the C. difficile VPI 10463 genome (NZ_CMO000604) using the Geneious
mapper with default settings, mapping only those reads in which each member of the pair mapped at
the expected distance from the other member, resulting in averages of 9.74 X 104, 1.49 X 109, and
1.45 X 106 reads mapping at 12, 24, and 30 h, respectively. Differential expression analysis was
performed with the DESeq2 plugin within Geneious, defining a gene as differentially expressed if there
was at least a 2-fold change in expression with an adjusted P value (P-adj.) of <0.05 to account for
multiple-testing results (52). A Venn diagram of unique and shared differentially expressed genes was
generated in Venny 2.1 (84), and volcano plots were constructed in R. Protein sequences from every
differentially expressed gene were obtained via Batch Entrez and loaded into Blast2GO for Gene
Ontology mapping, Enzyme Commission (EC) assignment, and mapping onto KEGG pathways. Among
the 24 h versus 12 h DEGs, 237 of 297 successfully completed the Blast2GO pipeline and were assigned
Gene Ontology (GO) annotations, as did 390 of 520 DEGs from the 30 h versus 12 h comparison; 12 of
14 from the 30 h versus 24 h comparison completed the pipeline. Many of those that did not complete
the pipeline were proteins of unknown function for which no GO annotation could be assigned or those
with no homologs identified via BLAST. These sequences were also uploaded to the STRING 10.5
database via the Web interface for prediction of protein interaction networks and enrichment analysis of
KEGG pathways (85). No changes from the default settings were made. The predicted interaction
networks for C. difficile VPI 10463 are unavailable in the STRING 10.5 database, so those for C. difficile 630
were used instead. Briefly, the STRING database compares the number of edges between the nodes in
a network to those in a random network of proteins of similar number and performs Fisher’s exact test
with multiple-comparison corrections to ascertain if pathways are enriched in the submitted network.

Reverse transcription and quantitative real-time PCR. DNA-depleted RNA was used as the
template for reverse transcription performed with Moloney murine leukemia virus (MMLV) reverse
transcriptase (NEB) following the manufacturer’s protocol. The cDNA samples were then diluted 1:5 in
water and used in quantitative real-time PCR with gene-specific primers (Table S1) using SsoAdvanced
Universal Sybr green Supermix (Bio-Rad) according to the manufacturer’s protocol. Amplifications were
performed in technical triplicate, and copy numbers were calculated by the use of a standard curve and
normalized to that of the housekeeping gene rpoC.

Multivariate-based integration of the gut metabolome and C. difficile transcriptome. To identify
associations between the gut metabolome and C. difficile transcriptome, we performed a sparse partial
least-squares-discriminant analysis (sPLS-DA) as implemented in the mixOmics package (86). sPLS-DA is
a supervised approach that combines dimensionality reduction with variable selection through penal-
ization (87). Within the mixOmics package, we applied the framework DIABLO, which focuses on the
integration of multiple omics measurements across n samples. We used the 11 pairwise samples of the
transcriptomics and metabolomics. Prior to utilizing the mixOmics package, we preprocessed the data
and used only those variables where the measurements had a standard deviation of greater than 0.1
across all time points. Additionally, we calculated the median absolute deviation for the transcriptomics
data and also utilized a threshold of 0.1 (88). Preprocessing the data reduced our variables to 621
metabolites and 1,771 transcripts across 11 time points as follows: three samples at the 12 h time point
and four samples each at the 24 h and 30 h time points.

The aim of the analysis was to identify a highly correlated multiomics signature discriminating the
time points throughout infection at 12 h, 24 h, and 30 h. We assumed that the transcriptome and
metabolome data were highly correlated and choose a design matrix where all blocks are connected
with a link value of 0.9. We tested this design link at values of 0.1 to 0.9 and did not find any noticeable
differences for varied correlation links. We fitted an sPLS-DA model, assessed the global performance,
and optimized the number of components. We choose the two-component approach on the basis of the
decrease in the overall balanced error and of the overall error decrease of the centroid and maximum
distances.

Using the optimal number of components, we then selected the optimum number of variables to use
for sPLS-DA. We created a grid with values of 2 to 100 and used the leave-one-out cross-validation scores
and the tuning function to determine the optimal sparsity parameters to classify the discrete outcome.
The tuning process chooses 2 and 12 metabolites and chooses 34 and 6 transcripts on the first
component and the second component, respectively, for the supervised analysis.

Data availability. Metabolomics data were deposited in the Metabolomics Workbench repository
under study number ST000930. Raw sequences have been deposited in the Sequence Read Archive (SRA)
with submission number SRP134023. The accession numbers are SAMN08639656, SAMN08639657,
SAMNO08639658, SAMN08639659, SAMN08639660, SAMN08639661, SAMN08639662, SAMNO08639663,
SAMNO08639664, SAMN08639665, SAMN08639666. Other raw data are provided in the supplemental
tables.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
mSphere.00089-18.

TEXT S1, DOCX file, 0.1 MB.

FIG S1, PDF file, 0.8 MB.

FIG S2, PDF file, 21.4 MB.
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