Skip to main content
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Research and News from ASM Journals
    • mSphere of Influence: Commentaries from Early Career Microbiologists
    • Archive
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mSphere
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mSphere
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Research and News from ASM Journals
    • mSphere of Influence: Commentaries from Early Career Microbiologists
    • Archive
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mSphere
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article | Host-Microbe Biology

Examining the Evidence for an Adult Healthy Middle Ear Microbiome

Jake Jervis-Bardy, Lex E. X. Leong, Lito E. Papanicolas, Kerry L. Ivey, Sharad Chawla, Charmaine M. Woods, Claire Frauenfelder, Eng H. Ooi, Geraint B. Rogers
Julia Oh, Editor
Jake Jervis-Bardy
aDepartment of Otolaryngology—Head & Neck Surgery, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
bDepartment of Otolaryngology—Head & Neck Surgery, The University of Adelaide, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lex E. X. Leong
cInfection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
dSAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lito E. Papanicolas
cInfection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
dSAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kerry L. Ivey
dSAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, South Australia, Australia
eDepartment of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sharad Chawla
aDepartment of Otolaryngology—Head & Neck Surgery, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charmaine M. Woods
aDepartment of Otolaryngology—Head & Neck Surgery, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claire Frauenfelder
aDepartment of Otolaryngology—Head & Neck Surgery, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eng H. Ooi
aDepartment of Otolaryngology—Head & Neck Surgery, Flinders Medical Centre, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Geraint B. Rogers
cInfection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
dSAHMRI Microbiome Research Laboratory, Flinders University School of Medicine, Adelaide, South Australia, Australia
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Julia Oh
The Jackson Laboratory for Genomic Medicine
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mSphere.00456-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

Otitis media (OM) is a cluster of diseases of the middle ear that commonly result from bacterial infection. OM subtypes in which the tympanic membrane is intact (acute otitis media and otitis media with effusion) are presumed to result from pathogen translocation through the eustachian tube. Recent molecular-based studies have suggested that a diverse middle ear microbiome exists in the absence of disease. These have been largely unsupported by culture and feature species that commonly contaminate low-biomass sequencing data. Combining culture-based and molecular techniques, we undertook a detailed investigation of the evidence for bacterial colonization of the healthy middle ear. Middle ear (ME), nasopharynx (NP), and external ear canal (EC) swabs were collected from a total of 25 adult patients undergoing cochlear implant, stapedotomy, or translabyrinthine vestibular schwannoma resection. Diagnostic culture, microscopy, quantitative PCR, and 16S rRNA gene amplicon sequencing were used to assess sample bacterial content. EC and NP microbiota were consistent with previous reports. In contrast, bacterial levels in ME samples were not significantly above those in unused control swabs. Commonly detected taxa were among recognized sequencing contaminants (Methylobacterium, Pseudomonas, and Acinetobacter). Linear regression of dominant ME taxa confirmed a negative relationship between relative abundance and bacterial load, consistent with contamination. No bacteria were detected by microscopy or diagnostic culture in any middle ear sample. Our findings cast substantial doubt on previous reports identifying a healthy middle ear microbiome using 16S amplicon sequencing.

IMPORTANCE Recent molecular-based studies have suggested that a diverse middle ear microbiome in adults and children can exist in the absence of disease. These studies have been largely unsupported by culture and feature species that commonly contaminate low-biomass sequencing data. While 16S rRNA gene amplicon sequencing has proven to be a highly informative technique in many clinical contexts, it is susceptible to spurious signal arising from sequencing reagent contaminants where sample biomass is low. Combining culture-based and molecular techniques, we undertook a detailed investigation of the evidence for bacterial colonization of the healthy middle ear. In finding no evidence of viable bacterial cells in middle ear samples, our study further underlines the importance of careful consideration of amplicon sequence data derived from very-low-biomass contexts and the value of analytical approaches that combine culture and molecular techniques.

  • Copyright © 2019 Jervis-Bardy et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
Examining the Evidence for an Adult Healthy Middle Ear Microbiome
Jake Jervis-Bardy, Lex E. X. Leong, Lito E. Papanicolas, Kerry L. Ivey, Sharad Chawla, Charmaine M. Woods, Claire Frauenfelder, Eng H. Ooi, Geraint B. Rogers
mSphere Sep 2019, 4 (5) e00456-19; DOI: 10.1128/mSphere.00456-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mSphere article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Examining the Evidence for an Adult Healthy Middle Ear Microbiome
(Your Name) has forwarded a page to you from mSphere
(Your Name) thought you would be interested in this article in mSphere.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Examining the Evidence for an Adult Healthy Middle Ear Microbiome
Jake Jervis-Bardy, Lex E. X. Leong, Lito E. Papanicolas, Kerry L. Ivey, Sharad Chawla, Charmaine M. Woods, Claire Frauenfelder, Eng H. Ooi, Geraint B. Rogers
mSphere Sep 2019, 4 (5) e00456-19; DOI: 10.1128/mSphere.00456-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

microbiome
middle ear
otitis media

Related Articles

Cited By...

About

  • About mSphere
  • Board of Editors
  • Policies
  • For Reviewers
  • For the Media
  • Embargo Policy
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Types of Articles
  • Getting Started
  • Ethics
  • Contact Us

Follow #mSphereJ

@ASMicrobiology

       

 

Website feedback

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2379-5042