Skip to main content
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems
  • Log in
  • My alerts
  • My Cart

Main menu

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Research and News from ASM Journals
    • mSphere of Influence: Commentaries from Early Career Microbiologists
    • Archive
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mSphere
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
  • ASM Journals
    • Antimicrobial Agents and Chemotherapy
    • Applied and Environmental Microbiology
    • Clinical Microbiology Reviews
    • Clinical and Vaccine Immunology
    • EcoSal Plus
    • Eukaryotic Cell
    • Infection and Immunity
    • Journal of Bacteriology
    • Journal of Clinical Microbiology
    • Journal of Microbiology & Biology Education
    • Journal of Virology
    • mBio
    • Microbiology and Molecular Biology Reviews
    • Microbiology Resource Announcements
    • Microbiology Spectrum
    • Molecular and Cellular Biology
    • mSphere
    • mSystems

User menu

  • Log in
  • My alerts
  • My Cart

Search

  • Advanced search
mSphere
publisher-logosite-logo

Advanced Search

  • Home
  • Articles
    • Latest Articles
    • COVID-19 Research and News from ASM Journals
    • mSphere of Influence: Commentaries from Early Career Microbiologists
    • Archive
  • Topics
    • Applied and Environmental Science
    • Clinical Science and Epidemiology
    • Ecological and Evolutionary Science
    • Host-Microbe Biology
    • Molecular Biology and Physiology
    • Therapeutics and Prevention
  • For Authors
    • Getting Started
    • Submit a Manuscript
    • Scope
    • Editorial Policy
    • Submission, Review, & Publication Processes
    • Organization and Format
    • Errata, Author Corrections, Retractions
    • Illustrations and Tables
    • Nomenclature
    • Abbreviations and Conventions
    • Publication Fees
    • Ethics Resources and Policies
  • About the Journal
    • About mSphere
    • Editor in Chief
    • Board of Editors
    • For Reviewers
    • For the Media
    • For Librarians
    • For Advertisers
    • Alerts
    • RSS
    • FAQ
Research Article | Molecular Biology and Physiology

A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development

Stephanie Santarriaga, Alicia Fikejs, Jamie Scaglione, K. Matthew Scaglione
Aaron P. Mitchell, Editor
Stephanie Santarriaga
aDepartment of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alicia Fikejs
aDepartment of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jamie Scaglione
bDepartment of Computational and Physical Sciences, Carroll University, Waukesha, Wisconsin, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K. Matthew Scaglione
aDepartment of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for K. Matthew Scaglione
Aaron P. Mitchell
Carnegie Mellon University
Roles: Editor
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DOI: 10.1128/mSphere.00314-19
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

ABSTRACT

The social amoeba Dictyostelium discoideum’s proteome contains a vast array of simple sequence repeats, providing a unique model to investigate proteostasis. Upon conditions of cellular stress, D. discoideum undergoes a developmental process, transitioning from a unicellular amoeba to a multicellular fruiting body. Little is known about how proteostasis is maintained during D. discoideum’s developmental process. Here, we have identified a novel α-crystallin domain-containing protein, heat shock protein 48 (HSP48), that is upregulated during D. discoideum development. HSP48 functions in part by forming a biomolecular condensate via its highly positively charged intrinsically disordered carboxy terminus. In addition to HSP48, the highly negatively charged primordial chaperone polyphosphate is also upregulated during D. discoideum development, and polyphosphate functions to stabilize HSP48. Upon germination, levels of both HSP48 and polyphosphate dramatically decrease, consistent with a role for HSP48 and polyphosphate during development. Together, our data demonstrate that HSP48 is strongly induced during Dictyostelium discoideum development. We also demonstrate that HSP48 forms a biomolecular condensate and that polyphosphate is necessary to stabilize the HSP48 biomolecular condensate.

IMPORTANCE During cellular stress, many microbes undergo a transition to a dormant state. This includes the social amoeba Dictyostelium discoideum that transitions from a unicellular amoeba to a multicellular fruiting body upon starvation. In this work, we identify heat shock protein 48 (HSP48) as a chaperone that is induced during development. We also show that HSP48 forms a biomolecular condensate and is stabilized by polyphosphate. The findings here identify Dictyostelium discoideum as a novel microbe to investigate protein quality control pathways during the transition to dormancy.

  • Copyright © 2019 Santarriaga et al.

This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

View Full Text
PreviousNext
Back to top
Download PDF
Citation Tools
A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development
Stephanie Santarriaga, Alicia Fikejs, Jamie Scaglione, K. Matthew Scaglione
mSphere Jun 2019, 4 (3) e00314-19; DOI: 10.1128/mSphere.00314-19

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Print
Alerts
Sign In to Email Alerts with your Email Address
Email

Thank you for sharing this mSphere article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development
(Your Name) has forwarded a page to you from mSphere
(Your Name) thought you would be interested in this article in mSphere.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A Heat Shock Protein 48 (HSP48) Biomolecular Condensate Is Induced during Dictyostelium discoideum Development
Stephanie Santarriaga, Alicia Fikejs, Jamie Scaglione, K. Matthew Scaglione
mSphere Jun 2019, 4 (3) e00314-19; DOI: 10.1128/mSphere.00314-19
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Top
  • Article
    • ABSTRACT
    • INTRODUCTION
    • RESULTS
    • DISCUSSION
    • MATERIALS AND METHODS
    • ACKNOWLEDGMENTS
    • FOOTNOTES
    • REFERENCES
  • Figures & Data
  • Info & Metrics
  • PDF

KEYWORDS

Dictyostelium discoideum
chaperone
phase separation
small heat shock protein

Related Articles

Cited By...

About

  • About mSphere
  • Board of Editors
  • Policies
  • For Reviewers
  • For the Media
  • Embargo Policy
  • For Librarians
  • For Advertisers
  • Alerts
  • RSS
  • FAQ
  • Permissions
  • Journal Announcements

Authors

  • ASM Author Center
  • Submit a Manuscript
  • Author Warranty
  • Types of Articles
  • Getting Started
  • Ethics
  • Contact Us

Follow #mSphereJ

@ASMicrobiology

       

 

Website feedback

ASM Journals

ASM journals are the most prominent publications in the field, delivering up-to-date and authoritative coverage of both basic and clinical microbiology.

About ASM | Contact Us | Press Room

 

ASM is a member of

Scientific Society Publisher Alliance

 

American Society for Microbiology
1752 N St. NW
Washington, DC 20036
Phone: (202) 737-3600

Copyright © 2021 American Society for Microbiology | Privacy Policy | Website feedback

Online ISSN: 2379-5042